A binary-based approach for detecting irregularly shaped clusters
نویسندگان
چکیده
BACKGROUND There are many applications for spatial cluster detection and more detection methods have been proposed in recent years. Most cluster detection methods are efficient in detecting circular (or circular-like) clusters, but the methods which can detect irregular-shaped clusters usually require a lot of computing time. METHODS We propose a new spatial detection algorithm for lattice data. The proposed method can be separated into two stages: the first stage determines the significant cells with unusual occurrences (i.e., individual clustering) by applying the Choynowski's test, and the second stage determines if there are clusters based on the information of the first stage by a binomial approximate method. We first use computer simulation to evaluate the performance of the proposed method and compare it with the scan statistics. Furthermore, we take the Taiwan Cancer data in 2000 to illustrate the detection results of the scan statistics and the proposed method. RESULTS The simulation results support using the proposed method when the population sizes are large and the study regions are irregular. However, in general, the scan statistics still have better power in detecting clusters, especially when the population sizes are not large. For the analysis of cancer data, the scan statistics tend to spot more clusters, and the clusters' shapes are close to circular (or elliptic). On the other hand, the proposed methods only find one cluster and cannot detect small-sized clusters. CONCLUSIONS In brief, the proposed methods can detect both circular and non-circular clusters well when the significant cells are correctly detected by the Choynowski's method. In addition, the binomial-based method can handle the problem of multiple testing and save the computing time. On the other hand, both the circular and elliptical scan statistics have good power in detecting clusters, but tend to detect more clusters and have lower accuracy in detecting non-circular clusters.
منابع مشابه
Detecting Irregularly Shaped Significant Spatial and Spatio-Temporal Clusters
Detecting significant overdensity or underdensity clusters in spatio-temporal data is critical for many real-world applications. Most existing approaches are designed to deal with regularly shaped clusters such as circular, elliptic and rectangular ones, but cannot work well on irregularly shaped clusters. In this paper, we propose GridScan, a grid-based approach for detecting irregularly shape...
متن کاملEvaluation of the Gini Coefficient in Spatial Scan Statistics for Detecting Irregularly Shaped Clusters
Spatial scan statistics with circular or elliptic scanning windows are commonly used for cluster detection in various applications, such as the identification of geographical disease clusters from epidemiological data. It has been pointed out that the method may have difficulty in correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated the Gini coefficient fo...
متن کاملA flexibly shaped space-time scan statistic for disease outbreak detection and monitoring
BACKGROUND Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many differe...
متن کاملPenalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters
BACKGROUND Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivi...
متن کاملStarScan: A Novel Scan Statistic for Irregularly-Shaped Spatial Clusters
Introduction Kulldorff’s spatial scan statistic1 detects significant spatial clusters of disease by maximizing a likelihood ratio statistic over circular spatial regions. The fast localized subset scan2 enables scalable detection of proximity-constrained subsets and increases power to detect irregularly-shaped clusters, However, unconstrained subset scanning within each circular neighborhood2, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2013